logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Le modèle binomial : une version simple pour les options européennes 

Le modèle binomial : une version simple pour les options européennes

Publié le 20 Septembre 2010 par Strategies-options.com
icone rss


Le modèle binomial est un modèle très intuitif pour comprendre comment s'évalue la valeur d'une option.

Le modèle binomial est un modèle discret d’évaluation d’options. D’une grande simplicité, il a permis à des générations de traders et de market-makers d’évaluer leurs books avec une flexibilité suffisante pour leur permettre de gagner leurs vies, et parfois plus.



I - Un modèle discret !

Le modèle binomial est un modèle discret par opposition aux modèles dit « continus » ou à « temps continu », c’est à dire qu’il calcule la valeur d’une option en décomposant la maturité T exprimée en année(s) de l’option en n périodes égales de maturité ∆t.

On a donc :

T = n.∆t

Bien entendu, plus le nombre n de périodes est grand, plus la période est petite (de telle manière que la multiplication de l’un avec l’autre soit toujours égale à T), et plus on tend à avoir un modèle qui ressemble aux modèles continus.



II - Les données

Soient
S le sous-jacent
K le strike
σ la volatilité
b = r - q le coût de portage
avec
r le taux d’intérêt sans risque de maturité
q le dividende si le sous jacent est une action, le taux d’intérêt étranger s’il s’agit d’une devise par exemple.



III - Le modèle binomial

Le modèle binomial stipule que si on fractionne la durée de vie de l’option T en « n » petite durées « ∆t » qui valent chacune
∆t = T ∕n et que,

On pose u est le coefficient de hausse, d le coefficient de baisse tels que
u = exp( σ . √∆t )
d = exp( - σ√∆t )

On pose p est la probabilité « risque-neutre » de hausse du sous-jacent et
p = ( ( exp(b . ∆t) - d ) / ( u - d )

Où exp(.) est la fonction exponentielle de base e

Et que l’on note
m = n - i

Alors on a pour un call et un put de type européen,



La suite : Le Modèle Binomial : On Price !
Précédent : Les Modèles : Besoin D'un Cadre Pour Évaluer Les Produits Dérivés

Strategies-options.com
D'autres Fiches
Gamma hedging : principes fondamentaux
- Hedging -
Gamma hedging : principes fondamentaux
Être "delta-hedgé" parfois ne suffit pas...
Options Binaires : theta des options binaires
- Warrants, Turbos, Options Binaires -
Options Binaires : theta des options binaires
Le temps impacte la valeur des options binaires bien moins que celle des options "classiques".
Strategies Options CAC 40 - Static Hedge - Suivi 1
- Strategies -
Strategies Options CAC 40 - Static Hedge - Suivi 1
Un premier point qui commence bien.
Le modèle binomial : version détaillée
- Modèles d'évaluation d'options -
Le modèle binomial : version détaillée
Le modèle binomial peut se présenter sous forme d'arbre. Il est alors beaucoup plus riche d'informations.
European Reverse Knock Out Option Replication
- Stratégies Options Avancées -
European Reverse Knock Out Option Replication
Les options à barrière sont peu nombreuses à être disponibles sur les marchés réglementés. Il est parfois judicieux de pouvoir les répliquer et parfois même, les améliorer.
Iron Condor : une première approche
- Stratégies Options Avancées -
Iron Condor : une première approche
L'Iron Condor est l'une des stratégies options les plus prisées par les traders options. Son utilisation est aussi largement répandue parmi les investisseurs individuels.