logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Le modèle binomial : une version simple pour les options européennes 

Le modèle binomial : une version simple pour les options européennes

Publié le 20 Septembre 2015 par Strategies-options.com
icone rss


Le modèle binomial est un modèle très intuitif pour comprendre comment s'évalue la valeur d'une option.

Le modèle binomial est un modèle discret d’évaluation d’options. D’une grande simplicité, il a permis à des générations de traders et de market-makers d’évaluer leurs books avec une flexibilité suffisante pour leur permettre de gagner leurs vies, et parfois plus.



I - Un modèle discret !

Le modèle binomial est un modèle discret par opposition aux modèles dit « continus » ou à « temps continu », c’est à dire qu’il calcule la valeur d’une option en décomposant la maturité T exprimée en année(s) de l’option en n périodes égales de maturité ∆t.

On a donc :

T = n.∆t

Bien entendu, plus le nombre n de périodes est grand, plus la période est petite (de telle manière que la multiplication de l’un avec l’autre soit toujours égale à T), et plus on tend à avoir un modèle qui ressemble aux modèles continus.



II - Les données

Soient
S le sous-jacent
K le strike
σ la volatilité
b = r - q le coût de portage
avec
r le taux d’intérêt sans risque de maturité
q le dividende si le sous jacent est une action, le taux d’intérêt étranger s’il s’agit d’une devise par exemple.



III - Le modèle binomial

Le modèle binomial stipule que si on fractionne la durée de vie de l’option T en « n » petite durées « ∆t » qui valent chacune
∆t = T ∕n et que,

On pose u est le coefficient de hausse, d le coefficient de baisse tels que
u = exp( σ . √∆t )
d = exp( - σ√∆t )

On pose p est la probabilité « risque-neutre » de hausse du sous-jacent et
p = ( ( exp(b . ∆t) - d ) / ( u - d )

Où exp(.) est la fonction exponentielle de base e

Et que l’on note
m = n - i

Alors on a pour un call et un put de type européen,



La suite : Le Modèle Binomial : On Price !
Précédent : Les Modèles : Besoin D'un Cadre Pour Évaluer Les Produits Dérivés


Pdf connexes :

- Calcul Stochastique pour la finance


Strategies-options.com
D'autres Fiches
Définition simple d'un warrant
- Warrants, Turbos, Options Binaires -
Définition simple d'un warrant
Qu'est ce qu'un warrant ?
Le Vstoxx - Un VIX pour l'Eurostoxx50
- ABC des Options -
Le Vstoxx - Un VIX pour l'Eurostoxx50
Qu'est ce que le Vstoxx ?
Bilan Strategie Ratio Backspread sur le CAC40 JUN12
- Les Stratégies Options sur Actions et Indices -
Bilan Strategie Ratio Backspread sur le CAC40 JUN12
Résumé et bilan de la stratégie de Ratio Backspread JUN12 sur le CAC40 + 1983 euros
Ratio backspread sur le CAC 40 (suivi 6)
- Les Stratégies Options sur Actions et Indices -
Ratio backspread sur le CAC 40 (suivi 6)
Et la hausse continue sur le CAC 40, et la volatilité continue à baisser sur notre Ratio.
Le butterfly spread : une première approche
- Stratégies Options Avancées -
Le butterfly spread : une première approche
Le butterfly spread est une stratégie "classique" avec les options, qui combine l'achat et la vente simultanée de trois options.
La volatilité : Trading Formulae
- ABC des Options -
La volatilité : Trading Formulae
Un titre qui bouge et une volatilité nulle, est ce possible ?