logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Black & Scholes : une première approche 

Black & Scholes : une première approche

Publié le 08 Juillet 2011 par Strategies Options
icone rss


Le modèle de Black & Scholes (1973), parfois appelé Black Scholes Merton (BSM), est un modèle standard d’évaluation des options de type européen

C'est probablement le modèle de finance le plus connu du monde et sa "simplicité" a fait qu'il a énormément contribué à la démocratisation des options auprès d'un large public.



I - Les hypothèses

Plus souvent utilisé en termes de modèle de cotation des options, il donne la valeur d’une option à partir des hypothèses suivantes :

1 - pas d’impôt
2 - pas de frais de transaction
3 - possibilité de vendre à découvert l’actif sous jacent
4 - la volatilité les taux d’intérêt sont constants (ou du moins déterministes)
5 - le marché du sous jacent est permanent (24h/24)




II - Les variables et paramètres

Il y a alors 2 variables et 5 paramètres qu’il suffit de connaitre afin de trouver la valeur d’un call et celle d’un put européen sur un actif :

Variables
La date d'évaluation t
Le niveau du sous jacent, son cours S

Paramètres
Le prix d'exercice K
Le taux d'intérêt continument composé r
Le taux de dividende / revenu continument composé q
La date d'échéance T
La volatilité du sous-jacent σ



III - Les valeurs

La valeur d'un call de maturité τ = T - t ,

C = exp ( - q.τ ) . S . N( d1 ) - exp ( - r.τ ) . K . N( d2 )


Avec
d1 = [ Ln( S / K ) + ( ( r - q + 0.5σ² ).τ )] / ( σ√τ )
d2 = [ Ln( S / K ) + ( ( r - q - 0.5σ² ).τ )] / ( σ√τ ) = d1 - ( σ√τ )
N(.) est la densité cumulée de la distribution Gaussienne, la loi Normale.
N( d1 ) = ∫ [ ((1 / ( √2п )) . exp( -z²/2 ) ] dz,intégrale calculée entre –inf et d1

De même, la valeur d'un put de maturité τ = T - t ,

P = - exp ( - q.τ ) . S . N( - d1 ) + exp ( - r.τ ) . K . N( - d2 )


Exemple :
S = 100, K = 100, r = 5%, σ = 30%, q = 0, T = 1 année

On obtient :
d1 = [ Ln( 100 / 100 ) + ( ( 5% + 0.5.(30%)² ). 1 )] / ( 30%√1 ) = 0.316667
d2 = [ Ln( 100 / 100 ) + ( ( 5% - 0.5.(30%)² ).1 )] / ( 30%√1 ) = 0.016667

N(d1) = 0.624252
N(d2) = 0.506649

C = exp ( - (0).(1) ) . 100 . 0.624252 - exp ( - 5%.(1) ) . 100 . 0.506649
C = 62.4252 - (0.9512).(100).(0.506649)
C = 62.4252 - 48.193918
C = 14.231255


N( - d1) = 0.375748
N( - d2) = 0.493351

P = - exp ( - (0).(1) ) . 100 . (0.375748) + exp ( - 5%.1 ) . 100 . (0.493351)
P = - 37.5748 + (0.9512).(100).(0.493351)
P = -375748 + 46.929024
P = 9.354197



IV - Représentation graphiques

Graphiquement en fonction du sous-jacent, on obtient

pour un call :



Et pour un put:




La suite : Black & Scholes : Le Modèle, Présentation Et Solution ( Part 1 )
ou
Black & Scholes: Les Grecs
Black & Scholes: On Price !

Précédent : Les Modèles : Besoin D'un Cadre Pour évaluer Les Produits Dérivés


Pdf connexes :

- Le modèle de Black–Scholes
- Black-Scholes Option Pricing Model



MODELE D'EVALUATION D'OPTIONS - INDEX
MODELE D'EVALUATION D'OPTIONS - CHAPITRE I
MODELE D'EVALUATION D'OPTIONS - CHAPITRE II
MODELE D'EVALUATION D'OPTIONS - CHAPITRE III

Strategies Options
D'autres Fiches
Strategies Options CAC 40 - Static Hedge - Suivi 5
- Les Stratégies Options sur Actions et Indices -
Strategies Options CAC 40 - Static Hedge - Suivi 5
Bon ben ça sera du rouge finalement !
L'achat d'option de vente - achat de put
- Stratégies Options Fondamentales -
L'achat d'option de vente - achat de put
L'achat d'un put est une stratégie évidente pour l'assurance des portefeuilles
Chooser option - Call ou Put ?
- Stratégies Options Fondamentales -
Chooser option - Call ou Put ?
Certaines options de type "exotiques" peuvent se répliquer très simplement avec des options vanilles
Black & Scholes : le modèle, présentation et solution ( Part 2 )
- Modèles d'évaluation d'options -
Black & Scholes : le modèle, présentation et solution ( Part 2 )
Solutions pour le call et le put standards de type européen. Les options classiques
Strategies Options CAC 40 - Static Hedge - Suivi 1
- Calculateur Online Volatilité Implicite -
Strategies Options CAC 40 - Static Hedge - Suivi 1
Un premier point qui commence bien.
Options Binaires : theta des options binaires
- Warrants, Turbos, Options Binaires -
Options Binaires : theta des options binaires
Le temps impacte la valeur des options binaires bien moins que celle des options "classiques".