logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Black & Scholes : une première approche 

Black & Scholes : une première approche

Publié le 08 Juillet 2011 par Strategies Options
icone rss


Le modèle de Black & Scholes (1973), parfois appelé Black Scholes Merton (BSM), est un modèle standard d’évaluation des options de type européen

C'est probablement le modèle de finance le plus connu du monde et sa "simplicité" a fait qu'il a énormément contribué à la démocratisation des options auprès d'un large public.



I - Les hypothèses

Plus souvent utilisé en termes de modèle de cotation des options, il donne la valeur d’une option à partir des hypothèses suivantes :

1 - pas d’impôt
2 - pas de frais de transaction
3 - possibilité de vendre à découvert l’actif sous jacent
4 - la volatilité les taux d’intérêt sont constants (ou du moins déterministes)
5 - le marché du sous jacent est permanent (24h/24)




II - Les variables et paramètres

Il y a alors 2 variables et 5 paramètres qu’il suffit de connaitre afin de trouver la valeur d’un call et celle d’un put européen sur un actif :

Variables
La date d'évaluation t
Le niveau du sous jacent, son cours S

Paramètres
Le prix d'exercice K
Le taux d'intérêt continument composé r
Le taux de dividende / revenu continument composé q
La date d'échéance T
La volatilité du sous-jacent σ



III - Les valeurs

La valeur d'un call de maturité τ = T - t ,

C = exp ( - q.τ ) . S . N( d1 ) - exp ( - r.τ ) . K . N( d2 )


Avec
d1 = [ Ln( S / K ) + ( ( r - q + 0.5σ² ).τ )] / ( σ√τ )
d2 = [ Ln( S / K ) + ( ( r - q - 0.5σ² ).τ )] / ( σ√τ ) = d1 - ( σ√τ )
N(.) est la densité cumulée de la distribution Gaussienne, la loi Normale.
N( d1 ) = ∫ [ ((1 / ( √2п )) . exp( -z²/2 ) ] dz,intégrale calculée entre –inf et d1

De même, la valeur d'un put de maturité τ = T - t ,

P = - exp ( - q.τ ) . S . N( - d1 ) + exp ( - r.τ ) . K . N( - d2 )


Exemple :
S = 100, K = 100, r = 5%, σ = 30%, q = 0, T = 1 année

On obtient :
d1 = [ Ln( 100 / 100 ) + ( ( 5% + 0.5.(30%)² ). 1 )] / ( 30%√1 ) = 0.316667
d2 = [ Ln( 100 / 100 ) + ( ( 5% - 0.5.(30%)² ).1 )] / ( 30%√1 ) = 0.016667

N(d1) = 0.624252
N(d2) = 0.506649

C = exp ( - (0).(1) ) . 100 . 0.624252 - exp ( - 5%.(1) ) . 100 . 0.506649
C = 62.4252 - (0.9512).(100).(0.506649)
C = 62.4252 - 48.193918
C = 14.231255


N( - d1) = 0.375748
N( - d2) = 0.493351

P = - exp ( - (0).(1) ) . 100 . (0.375748) + exp ( - 5%.1 ) . 100 . (0.493351)
P = - 37.5748 + (0.9512).(100).(0.493351)
P = -375748 + 46.929024
P = 9.354197



IV - Représentation graphiques

Graphiquement en fonction du sous-jacent, on obtient

pour un call :



Et pour un put:




La suite : Black & Scholes : Le Modèle, Présentation Et Solution ( Part 1 )
ou
Black & Scholes: Les Grecs
Black & Scholes: On Price !

Précédent : Les Modèles : Besoin D'un Cadre Pour évaluer Les Produits Dérivés

Programmation modèle Black Scholes
Option Pricing - Black Scholes En C++
Option Pricing - Black Scholes En Java
Option Pricing - Black Scholes En Python

Strategies Options
D'autres Fiches
Le Modèle Binomial : sous VBA
- Modèles d'évaluation d'options -
Le Modèle Binomial : sous VBA
Arbre Binomial Excel - Les modèles "numériques" se programment très facilement à l'aide d'un tableur type Excel, sous VBA (Visual Basic Applications)
Le call spread : le Vega
- Stratégies Options Fondamentales -
Le call spread : le Vega
Comment impactent les variations de la volatilité implicite sur la valeur du call spread
Montant à investir en trading - Critère de Kelly Part 1
- ABC des Options -
Montant à investir en trading - Critère de Kelly Part 1
Quelle part de son capital doit-on investir pour une allocation optimal ? Le "Kelly" propose une réponse.
La vente d'option de vente - vente de put
- Stratégies Options Fondamentales -
La vente d'option de vente - vente de put
La vente d'un put est une stratégie très répandue dans les gestions dans le but d'accroitre la rentabilité des fonds gérés.
Les Options Binaires
- Warrants, Turbos, Options Binaires -
Les Options Binaires
Les options binaires peuvent être évaluées dans le cadre du modèle de Black & Scholes
Ratio backspread sur le CAC 40 (suivi 6)
- Les Stratégies Options sur Actions et Indices -
Ratio backspread sur le CAC 40 (suivi 6)
Et la hausse continue sur le CAC 40, et la volatilité continue à baisser sur notre Ratio.