logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Black & Scholes : une première approche 

Black & Scholes : une première approche

Publié le 08 Juillet 2011 par Strategies Options
icone rss


Le modèle de Black & Scholes (1973), parfois appelé Black Scholes Merton (BSM), est un modèle standard d’évaluation des options de type européen

C'est probablement le modèle de finance le plus connu du monde et sa "simplicité" a fait qu'il a énormément contribué à la démocratisation des options auprès d'un large public.



I - Les hypothèses

Plus souvent utilisé en termes de modèle de cotation des options, il donne la valeur d’une option à partir des hypothèses suivantes :

1 - pas d’impôt
2 - pas de frais de transaction
3 - possibilité de vendre à découvert l’actif sous jacent
4 - la volatilité les taux d’intérêt sont constants (ou du moins déterministes)
5 - le marché du sous jacent est permanent (24h/24)




II - Les variables et paramètres

Il y a alors 2 variables et 5 paramètres qu’il suffit de connaitre afin de trouver la valeur d’un call et celle d’un put européen sur un actif :

Variables
La date d'évaluation t
Le niveau du sous jacent, son cours S

Paramètres
Le prix d'exercice K
Le taux d'intérêt continument composé r
Le taux de dividende / revenu continument composé q
La date d'échéance T
La volatilité du sous-jacent σ



III - Les valeurs

La valeur d'un call de maturité τ = T - t ,

C = exp ( - q.τ ) . S . N( d1 ) - exp ( - r.τ ) . K . N( d2 )


Avec
d1 = [ Ln( S / K ) + ( ( r - q + 0.5σ² ).τ )] / ( σ√τ )
d2 = [ Ln( S / K ) + ( ( r - q - 0.5σ² ).τ )] / ( σ√τ ) = d1 - ( σ√τ )
N(.) est la densité cumulée de la distribution Gaussienne, la loi Normale.
N( d1 ) = ∫ [ ((1 / ( √2п )) . exp( -z²/2 ) ] dz,intégrale calculée entre –inf et d1

De même, la valeur d'un put de maturité τ = T - t ,

P = - exp ( - q.τ ) . S . N( - d1 ) + exp ( - r.τ ) . K . N( - d2 )


Exemple :
S = 100, K = 100, r = 5%, σ = 30%, q = 0, T = 1 année

On obtient :
d1 = [ Ln( 100 / 100 ) + ( ( 5% + 0.5.(30%)² ). 1 )] / ( 30%√1 ) = 0.316667
d2 = [ Ln( 100 / 100 ) + ( ( 5% - 0.5.(30%)² ).1 )] / ( 30%√1 ) = 0.016667

N(d1) = 0.624252
N(d2) = 0.506649

C = exp ( - (0).(1) ) . 100 . 0.624252 - exp ( - 5%.(1) ) . 100 . 0.506649
C = 62.4252 - (0.9512).(100).(0.506649)
C = 62.4252 - 48.193918
C = 14.231255


N( - d1) = 0.375748
N( - d2) = 0.493351

P = - exp ( - (0).(1) ) . 100 . (0.375748) + exp ( - 5%.1 ) . 100 . (0.493351)
P = - 37.5748 + (0.9512).(100).(0.493351)
P = -375748 + 46.929024
P = 9.354197



IV - Représentation graphiques

Graphiquement en fonction du sous-jacent, on obtient

pour un call :



Et pour un put:




La suite : Black & Scholes : Le Modèle, Présentation Et Solution ( Part 1 )
ou
Black & Scholes: Les Grecs
Black & Scholes: On Price !

Précédent : Les Modèles : Besoin D'un Cadre Pour évaluer Les Produits Dérivés

Programmation modèle Black Scholes
Option Pricing - Black Scholes En C++
Option Pricing - Black Scholes En Java
Option Pricing - Black Scholes En Python

Taux Negatif Et Trading

Strategies Options
D'autres Fiches
Le straddle : le Strike le moins cher
- Stratégies Options Fondamentales -
Le straddle : le Strike le moins cher
Quel est le strike qui donne la valeur la plus petite à un straddle selon une volatilité et un spot donnés ?
Delta Hedging : une première approche
- Hedging -
Delta Hedging : une première approche
Le prix d'une option varie en fonction du prix du sous-jacent. Se couvrir contre le risque de variation du sous-jacent, c'est limiter son exposition vis à vis de cette corrélation.
Le call spread : présence de skew
- Stratégies Options Fondamentales -
Le call spread : présence de skew
Le skew de volatilité implicite modifie le prix du call spread
Simulation Monte Carlo : une première approche
- ABC des Options -
Simulation Monte Carlo : une première approche
Il existe différentes manières d'évaluer les options. Les formes fermées, les modèles "à arbre" en sont certaines. Monté Carlo en est une autre.
Les stability warrants
- Warrants, Turbos, Options Binaires -
Les stability warrants
Les stability warrants sont en fait des options exotiques appelées double barrier binaries.
Le modèle trinomial : - American Style -
- Modèles d'évaluation d'options -
Le modèle trinomial : - American Style -
L'évaluation des options de type américain, exerçables chaque jour jusqu'à l'échéance, est directe moyennant l'ajout d'une simple contrainte supplémentaire.