logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Black & Scholes : une première approche 

Black & Scholes : une première approche

Publié le 08 Juillet 2011 par Strategies Options
icone rss


Le modèle de Black & Scholes (1973), parfois appelé Black Scholes Merton (BSM), est un modèle standard d’évaluation des options de type européen

C'est probablement le modèle de finance le plus connu du monde et sa "simplicité" a fait qu'il a énormément contribué à la démocratisation des options auprès d'un large public.



I - Les hypothèses

Plus souvent utilisé en termes de modèle de cotation des options, il donne la valeur d’une option à partir des hypothèses suivantes :

1 - pas d’impôt
2 - pas de frais de transaction
3 - possibilité de vendre à découvert l’actif sous jacent
4 - la volatilité les taux d’intérêt sont constants (ou du moins déterministes)
5 - le marché du sous jacent est permanent (24h/24)




II - Les variables et paramètres

Il y a alors 2 variables et 5 paramètres qu’il suffit de connaitre afin de trouver la valeur d’un call et celle d’un put européen sur un actif :

Variables
La date d'évaluation t
Le niveau du sous jacent, son cours S

Paramètres
Le prix d'exercice K
Le taux d'intérêt continument composé r
Le taux de dividende / revenu continument composé q
La date d'échéance T
La volatilité du sous-jacent σ



III - Les valeurs

La valeur d'un call de maturité τ = T - t ,

C = exp ( - q.τ ) . S . N( d1 ) - exp ( - r.τ ) . K . N( d2 )


Avec
d1 = [ Ln( S / K ) + ( ( r - q + 0.5σ² ).τ )] / ( σ√τ )
d2 = [ Ln( S / K ) + ( ( r - q - 0.5σ² ).τ )] / ( σ√τ ) = d1 - ( σ√τ )
N(.) est la densité cumulée de la distribution Gaussienne, la loi Normale.
N( d1 ) = ∫ [ ((1 / ( √2п )) . exp( -z²/2 ) ] dz,intégrale calculée entre –inf et d1

De même, la valeur d'un put de maturité τ = T - t ,

P = - exp ( - q.τ ) . S . N( - d1 ) + exp ( - r.τ ) . K . N( - d2 )


Exemple :
S = 100, K = 100, r = 5%, σ = 30%, q = 0, T = 1 année

On obtient :
d1 = [ Ln( 100 / 100 ) + ( ( 5% + 0.5.(30%)² ). 1 )] / ( 30%√1 ) = 0.316667
d2 = [ Ln( 100 / 100 ) + ( ( 5% - 0.5.(30%)² ).1 )] / ( 30%√1 ) = 0.016667

N(d1) = 0.624252
N(d2) = 0.506649

C = exp ( - (0).(1) ) . 100 . 0.624252 - exp ( - 5%.(1) ) . 100 . 0.506649
C = 62.4252 - (0.9512).(100).(0.506649)
C = 62.4252 - 48.193918
C = 14.231255


N( - d1) = 0.375748
N( - d2) = 0.493351

P = - exp ( - (0).(1) ) . 100 . (0.375748) + exp ( - 5%.1 ) . 100 . (0.493351)
P = - 37.5748 + (0.9512).(100).(0.493351)
P = -375748 + 46.929024
P = 9.354197



IV - Représentation graphiques

Graphiquement en fonction du sous-jacent, on obtient

pour un call :



Et pour un put:




La suite : Black & Scholes : Le Modèle, Présentation Et Solution ( Part 1 )
ou
Black & Scholes: Les Grecs
Black & Scholes: On Price !

Précédent : Les Modèles : Besoin D'un Cadre Pour évaluer Les Produits Dérivés

Programmation modèle Black Scholes
Option Pricing - Black Scholes En C++
Option Pricing - Black Scholes En Java
Option Pricing - Black Scholes En Python

Strategies Options
D'autres Fiches
Iron Condor - SO Set Up
- Stratégies Options Avancées -
Iron Condor - SO Set Up
Les Iron Condors sont des stratégies traditionnelles pour les traders options. Cette fois, une remise au goût du jour : SO Set Up
CAC 40 : risk-reversal delta-hedge suivi 8
- Les Stratégies Options sur Actions et Indices -
CAC 40 : risk-reversal delta-hedge suivi 8
P&L + 1513 euros
Strategies Options CAC40 Up and Out Call
- Les Stratégies Options sur Actions et Indices -
Strategies Options CAC40 Up and Out Call
Stratégies Options sur le CAC pour ce début 2016
Eur/USD: Suivi put spread (3)
- Les Stratégies Options sur Forex -
Eur/USD: Suivi put spread (3)
Le pair EUR-USD a finalement choisi de rester un peu plus bas...mais pas trop
Surface de volatilité : une première approche
- ABC des Options -
Surface de volatilité : une première approche
La volatilité implicite varie pour différents strikes d'une même échéance, et même entre les échéances.
Le modèle binomial : On price !
- Modèles d'évaluation d'options -
Le modèle binomial : On price !
Un moyen très simple et très facile d'évaluer une option avec le modèle binomial est de le réaliser sur un tableur type Excel ou OpenOffice par exemple.