logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Black & Scholes : une première approche 

Black & Scholes : une première approche

Publié le 08 Juillet 2011 par Strategies Options
icone rss


Le modèle de Black & Scholes (1973), parfois appelé Black Scholes Merton (BSM), est un modèle standard d’évaluation des options de type européen

C'est probablement le modèle de finance le plus connu du monde et sa "simplicité" a fait qu'il a énormément contribué à la démocratisation des options auprès d'un large public.



I - Les hypothèses

Plus souvent utilisé en termes de modèle de cotation des options, il donne la valeur d’une option à partir des hypothèses suivantes :

1 - pas d’impôt
2 - pas de frais de transaction
3 - possibilité de vendre à découvert l’actif sous jacent
4 - la volatilité les taux d’intérêt sont constants (ou du moins déterministes)
5 - le marché du sous jacent est permanent (24h/24)




II - Les variables et paramètres

Il y a alors 2 variables et 5 paramètres qu’il suffit de connaitre afin de trouver la valeur d’un call et celle d’un put européen sur un actif :

Variables
La date d'évaluation t
Le niveau du sous jacent, son cours S

Paramètres
Le prix d'exercice K
Le taux d'intérêt continument composé r
Le taux de dividende / revenu continument composé q
La date d'échéance T
La volatilité du sous-jacent σ



III - Les valeurs

La valeur d'un call de maturité τ = T - t ,

C = exp ( - q.τ ) . S . N( d1 ) - exp ( - r.τ ) . K . N( d2 )


Avec
d1 = [ Ln( S / K ) + ( ( r - q + 0.5σ² ).τ )] / ( σ√τ )
d2 = [ Ln( S / K ) + ( ( r - q - 0.5σ² ).τ )] / ( σ√τ ) = d1 - ( σ√τ )
N(.) est la densité cumulée de la distribution Gaussienne, la loi Normale.
N( d1 ) = ∫ [ ((1 / ( √2п )) . exp( -z²/2 ) ] dz,intégrale calculée entre –inf et d1

De même, la valeur d'un put de maturité τ = T - t ,

P = - exp ( - q.τ ) . S . N( - d1 ) + exp ( - r.τ ) . K . N( - d2 )


Exemple :
S = 100, K = 100, r = 5%, σ = 30%, q = 0, T = 1 année

On obtient :
d1 = [ Ln( 100 / 100 ) + ( ( 5% + 0.5.(30%)² ). 1 )] / ( 30%√1 ) = 0.316667
d2 = [ Ln( 100 / 100 ) + ( ( 5% - 0.5.(30%)² ).1 )] / ( 30%√1 ) = 0.016667

N(d1) = 0.624252
N(d2) = 0.506649

C = exp ( - (0).(1) ) . 100 . 0.624252 - exp ( - 5%.(1) ) . 100 . 0.506649
C = 62.4252 - (0.9512).(100).(0.506649)
C = 62.4252 - 48.193918
C = 14.231255


N( - d1) = 0.375748
N( - d2) = 0.493351

P = - exp ( - (0).(1) ) . 100 . (0.375748) + exp ( - 5%.1 ) . 100 . (0.493351)
P = - 37.5748 + (0.9512).(100).(0.493351)
P = -375748 + 46.929024
P = 9.354197



IV - Représentation graphiques

Graphiquement en fonction du sous-jacent, on obtient

pour un call :



Et pour un put:




La suite : Black & Scholes : Le Modèle, Présentation Et Solution ( Part 1 )
ou
Black & Scholes: Les Grecs
Black & Scholes: On Price !

Précédent : Les Modèles : Besoin D'un Cadre Pour évaluer Les Produits Dérivés

Strategies Options
D'autres Fiches
Cours et cotations d'options
- ABC des Options -
Cours et cotations d'options
Places de marché où les instruments dérivés sont négociés. Liens, cotations et cours de compensation des futures et options.
Options Binaires : le delta pour les options binaires
- Warrants, Turbos, Options Binaires -
Options Binaires : le delta pour les options binaires
On a vu que la valeur d'une option binaire ressemblait "étrangement" au delta d'une option "classique". Qu'en est il de son delta ?
Calcul du VIX
- ABC des Options -
Calcul du VIX
Comment est calculé le VIX ?
Les modèles : besoin d'un cadre pour évaluer les produits dérivés
- Modèles d'évaluation d'options -
Les modèles : besoin d'un cadre pour évaluer les produits dérivés
"Parce que la différence entre 5 et 6 peut être parfois sacrément importante" (Insp. Harry Callahan/ Dirty Harry)
Strategies Options CAC 40 - Static Hedge - Suivi 1
- Pricers à télécharger -
Strategies Options CAC 40 - Static Hedge - Suivi 1
Un premier point qui commence bien.