logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Interprétation de N(d2) dans le modèle de Black-Scholes 

Interprétation de N(d2) dans le modèle de Black-Scholes

Publié le 31 Janvier 2013 par Morgane Tramasaygues
icone rss


Que signifie N(d2) dans le modèle Black & Scholes

Savoir calculer la valeur d'une option selon le modèle Black Scholes est très facile. Il est cependant nécessaire de comprendre ce que chaque terme de l'équation veut dire afin d'en saisir intuitivement la notion.



I - La formule de Black Scholes : cas du call.

On l'a déjà vu plusieurs fois, on peut exprimer la valeur d'un call de type européen comme suit :

C = exp( -q.T) . S . N(d1) - exp(-r.T) . K . N(d2)

Si on pose,
La date d'évaluation t
Le niveau du sous jacent, son cours S
Le prix d'exercice K
Le taux d'intérêt continument composé r
Le taux de dividende / revenu continument composé q
La maturité T (en année)
La volatilité du sous-jacent σ

d1 = [ Ln( S / K ) + ( ( r - q + 0.5σ² ).τ )] / ( σ√τ )
d2 = [ Ln( S / K ) + ( ( r - q - 0.5σ² ).τ )] / ( σ√τ ) = d1 - ( σ√τ )
N(.) est la densité cumulée de la distribution Gaussienne, la loi Normale.
N( d1 ) = ∫ [ ((1 / ( √2п )) . exp( -z²/2 ) ] dz,intégrale calculée entre –inf et d1



II - N(d2) une probabilité corrigée du risque du Call de finir dans la monnaie

Si on part du principe que le sous-jacent suit un mouvement Brownien géométrique tel que :

(dS) / S = μdt + σdZ

Avec,
Z un processus de Wiener
(dZ)² = 1

Si μ est le taux de croissance du sous-jacent, alors :

dLn(St) = (μ – σ²/2)dt + σdZ
Ln(St/S0) = (μ – σ²/2)t + σ√tZ

Si μ = r , la probabilité que St >K est P (St >K) telle que :

P (St >K) = P [ Ln(St) > Ln(K) ] = P [ Ln(St/ S0) > Ln(K/ S0) ]
P (St >K) = P [(r– σ²/2)t + σ√tZ > Ln(K/ S0) ]
P (St >K) = P [ σ√tZ > Ln(K/ S0) - (r– σ²/2)t ]
P (St >K) = P [ Z > ( Ln(K/ S0) - (r– σ²/2)t ) / σ√t]
P (St >K) = P [ Z > -( Ln(S0/K) - (r– σ²/2)t ) / σ√t]

Avec d2 = ( Ln(S0/K) - (r - σ²/2)t ) / σ√t on obtient :

P (St >K) = P [ Z > - d2 ] = P [ Z < d2 ] = N(d2)

P (St >K) = N(d2)

N(d2) est donc la probabilité "corrigée du risque" ( => µ = r ) que le sous jacent finisse à l'échéance au moins au niveau du strike, ie le call termine "In the Money".


Le prix d'un call est donc :
C = [ S . N(d1)] - [exp( -r.T) . K . Probabilité "risque neutre" que le call termine à l'échéance "ITM"].

Mais que signifie N(d1) ?

La suite : Interprétation De N(d1) Dans Le Modèle De Black-Scholes
Précédent : Options Forex - Modèle De Garman - Kohlhagen

Programmation modèle Black Scholes
Option Pricing - Black Scholes En C++
Option Pricing - Black Scholes En Java
Option Pricing - Black Scholes En Python

D'autres Fiches
Special Options Situations
- Conseils en stratégies et pricing -
Special Options Situations
Vous êtes confronté ponctuellement à une situation complexe de gestion, de pricing, de risk management et vous souhaitez profiter de l'expérience d'un professionnel: gagnez du temps et donc de l'argent.
Strategie Options sur Devises - USDJPY
- Les Stratégies Options sur Forex -
Strategie Options sur Devises - USDJPY
Départ sur un diagonal spread sur USDJPY
Gamma hedging : principes fondamentaux
- Hedging -
Gamma hedging : principes fondamentaux
Être "delta-hedgé" parfois ne suffit pas...
Don't Trade Options Blind - Know Your Implied Volatility
- Webinaires sur l'utilisation des options En diff -
Don't Trade Options Blind - Know Your Implied Volatility
Don't Trade Options Blind - Know Your Implied Volatility
Bilan Strategie Double Butterfly €/USD
- Les Stratégies Options sur Forex -
Bilan Strategie Double Butterfly €/USD
Résumé et bilan de la stratégie de double butterfly spread sur l'euro/usd
Call-Put Symétrie #2
- Relations entre Sensibilités des Options -
Call-Put Symétrie #2
Une évidence ATMF