logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Interprétation de N(d2) dans le modèle de Black-Scholes 

Interprétation de N(d2) dans le modèle de Black-Scholes

Publié le 31 Janvier 2013 par Morgane Tramasaygues
icone rss


Que signifie N(d2) dans le modèle Black & Scholes

Savoir calculer la valeur d'une option selon le modèle Black Scholes est très facile. Il est cependant nécessaire de comprendre ce que chaque terme de l'équation veut dire afin d'en saisir intuitivement la notion.



I - La formule de Black Scholes : cas du call.

On l'a déjà vu plusieurs fois, on peut exprimer la valeur d'un call de type européen comme suit :

C = exp( -q.T) . S . N(d1) - exp(-r.T) . K . N(d2)

Si on pose,
La date d'évaluation t
Le niveau du sous jacent, son cours S
Le prix d'exercice K
Le taux d'intérêt continument composé r
Le taux de dividende / revenu continument composé q
La maturité T (en année)
La volatilité du sous-jacent σ

d1 = [ Ln( S / K ) + ( ( r - q + 0.5σ² ).τ )] / ( σ√τ )
d2 = [ Ln( S / K ) + ( ( r - q - 0.5σ² ).τ )] / ( σ√τ ) = d1 - ( σ√τ )
N(.) est la densité cumulée de la distribution Gaussienne, la loi Normale.
N( d1 ) = ∫ [ ((1 / ( √2п )) . exp( -z²/2 ) ] dz,intégrale calculée entre –inf et d1



II - N(d2) une probabilité corrigée du risque du Call de finir dans la monnaie

Si on part du principe que le sous-jacent suit un mouvement Brownien géométrique tel que :

(dS) / S = μdt + σdZ

Avec,
Z un processus de Wiener
(dZ)² = 1

Si μ est le taux de croissance du sous-jacent, alors :

dLn(St) = (μ – σ²/2)dt + σdZ
Ln(St/S0) = (μ – σ²/2)t + σ√tZ

Si μ = r , la probabilité que St >K est P (St >K) telle que :

P (St >K) = P [ Ln(St) > Ln(K) ] = P [ Ln(St/ S0) > Ln(K/ S0) ]
P (St >K) = P [(r– σ²/2)t + σ√tZ > Ln(K/ S0) ]
P (St >K) = P [ σ√tZ > Ln(K/ S0) - (r– σ²/2)t ]
P (St >K) = P [ Z > ( Ln(K/ S0) - (r– σ²/2)t ) / σ√t]
P (St >K) = P [ Z > -( Ln(S0/K) - (r– σ²/2)t ) / σ√t]

Avec d2 = ( Ln(S0/K) - (r - σ²/2)t ) / σ√t on obtient :

P (St >K) = P [ Z > - d2 ] = P [ Z < d2 ] = N(d2)

P (St >K) = N(d2)

N(d2) est donc la probabilité "corrigée du risque" ( => µ = r ) que le sous jacent finisse à l'échéance au moins au niveau du strike, ie le call termine "In the Money".


Le prix d'un call est donc :
C = [ S . N(d1)] - [exp( -r.T) . K . Probabilité "risque neutre" que le call termine à l'échéance "ITM"].

Mais que signifie N(d1) ?

La suite : Interprétation De N(d1) Dans Le Modèle De Black-Scholes
Précédent : Options Forex - Modèle De Garman - Kohlhagen

D'autres Fiches
Equivalences Options Binaires-Options Classiques
- Warrants, Turbos, Options Binaires -
Equivalences Options Binaires-Options Classiques
Les options binaires et les options classiques peuvent s'exprimer les unes en fonction des autres dans le modèle de Black & Scholes.
Les stability warrants : une première approche
- Warrants, Turbos, Options Binaires -
Les stability warrants : une première approche
Les stability warrants sont des produits financiers émis par des banques, indexés sur le comportement d'un actif sous-jacent et qui remboursent un montant fixe si le cours du sous jacent reste entre deux bornes, une haute et une basse.
Black & Scholes : le delta ∆
- Modèles d'évaluation d'options -
Black & Scholes : le delta ∆
Dans le modèle de Black & Scholes, l'expression du delta ∆ d'une option est défini comme la dérivée du prix de l'option par rapport au sous-jacent.
Gamma : une première approche
- ABC des Options -
Gamma : une première approche
Le taux de variation d'une option par rapport au sous-jacent, le delta, n'est pas constant. Il y a comme une accélération dans la variation du prix.
CAC 40 : risk-reversal delta-hedge suivi 3
- Les Stratégies Options sur Actions et Indices -
CAC 40 : risk-reversal delta-hedge suivi 3
- 4 % cette semaine et notre risk reversal delta hedgé a subi moins les variations de l'indice CAC 40 que les décalages des volatilités implicites.
Strategie Options sur Devises - USDJPY ( Suivi 7 )
- Les Stratégies Options sur Forex -
Strategie Options sur Devises - USDJPY ( Suivi 7 )
Il y a bien un moment où ça va s'arrêter, non ?