logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Interprétation de N(d2) dans le modèle de Black-Scholes 

Interprétation de N(d2) dans le modèle de Black-Scholes

Publié le 31 Janvier 2013 par Morgane Tramasaygues
icone rss


Que signifie N(d2) dans le modèle Black & Scholes

Savoir calculer la valeur d'une option selon le modèle Black Scholes est très facile. Il est cependant nécessaire de comprendre ce que chaque terme de l'équation veut dire afin d'en saisir intuitivement la notion.



I - La formule de Black Scholes : cas du call.

On l'a déjà vu plusieurs fois, on peut exprimer la valeur d'un call de type européen comme suit :

C = exp( -q.T) . S . N(d1) - exp(-r.T) . K . N(d2)

Si on pose,
La date d'évaluation t
Le niveau du sous jacent, son cours S
Le prix d'exercice K
Le taux d'intérêt continument composé r
Le taux de dividende / revenu continument composé q
La maturité T (en année)
La volatilité du sous-jacent σ

d1 = [ Ln( S / K ) + ( ( r - q + 0.5σ² ).τ )] / ( σ√τ )
d2 = [ Ln( S / K ) + ( ( r - q - 0.5σ² ).τ )] / ( σ√τ ) = d1 - ( σ√τ )
N(.) est la densité cumulée de la distribution Gaussienne, la loi Normale.
N( d1 ) = ∫ [ ((1 / ( √2п )) . exp( -z²/2 ) ] dz,intégrale calculée entre –inf et d1



II - N(d2) une probabilité corrigée du risque du Call de finir dans la monnaie

Si on part du principe que le sous-jacent suit un mouvement Brownien géométrique tel que :

(dS) / S = μdt + σdZ

Avec,
Z un processus de Wiener
(dZ)² = 1

Si μ est le taux de croissance du sous-jacent, alors :

dLn(St) = (μ – σ²/2)dt + σdZ
Ln(St/S0) = (μ – σ²/2)t + σ√tZ

Si μ = r , la probabilité que St >K est P (St >K) telle que :

P (St >K) = P [ Ln(St) > Ln(K) ] = P [ Ln(St/ S0) > Ln(K/ S0) ]
P (St >K) = P [(r– σ²/2)t + σ√tZ > Ln(K/ S0) ]
P (St >K) = P [ σ√tZ > Ln(K/ S0) - (r– σ²/2)t ]
P (St >K) = P [ Z > ( Ln(K/ S0) - (r– σ²/2)t ) / σ√t]
P (St >K) = P [ Z > -( Ln(S0/K) - (r– σ²/2)t ) / σ√t]

Avec d2 = ( Ln(S0/K) - (r - σ²/2)t ) / σ√t on obtient :

P (St >K) = P [ Z > - d2 ] = P [ Z < d2 ] = N(d2)

P (St >K) = N(d2)

N(d2) est donc la probabilité "corrigée du risque" ( => µ = r ) que le sous jacent finisse à l'échéance au moins au niveau du strike, ie le call termine "In the Money".


Le prix d'un call est donc :
C = [ S . N(d1)] - [exp( -r.T) . K . Probabilité "risque neutre" que le call termine à l'échéance "ITM"].

Mais que signifie N(d1) ?

La suite : Interprétation De N(d1) Dans Le Modèle De Black-Scholes
Précédent : Options Forex - Modèle De Garman - Kohlhagen

Programmation modèle Black Scholes
Option Pricing - Black Scholes En C++
Option Pricing - Black Scholes En Java
Option Pricing - Black Scholes En Python

D'autres Fiches
Risk reward - Partie I
- ABC des Options -
Risk reward - Partie I
Les idées "fausses" des risk rewards
Trader les options sur le cac40
- ABC des Options -
Trader les options sur le cac40
Même s'il n'est pas le plus liquide en termes d'options, on peut tenter le cac40 via les options
Le straddle : le Strike le moins cher
- Stratégies Options Fondamentales -
Le straddle : le Strike le moins cher
Quel est le strike qui donne la valeur la plus petite à un straddle selon une volatilité et un spot donnés ?
Les grecs : une première approche
- ABC des Options -
Les grecs : une première approche
Les paramètres (strike, dividende, taux d'intérêt sans risque, volatilité) et variables (sous-jacent et temps) qui constituent la valeur d'une option ne l'impactent pas dans les mêmes proportions.
Gamma : une première approche
- ABC des Options -
Gamma : une première approche
Le taux de variation d'une option par rapport au sous-jacent, le delta, n'est pas constant. Il y a comme une accélération dans la variation du prix.
Le butterfly spread : vega υ du butterfly spread
- Stratégies Options Avancées -
Le butterfly spread : vega υ du butterfly spread
Le butterfly spread réagit différemment aux variations de la volatilité implicite, en fonction du niveau du sous-jacent par rapport à la structure.