logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Relations entre Sensibilités des Options  >  Call-put parité : taux et future 

Call-put parité : taux et future

Publié le 18 Juillet 2011 par Call Put Parity
icone rss


Les valeurs des options et la maturité suffisent à retrouver le niveau du contrat future et le taux d'intérêt. Parfois on peut même trouver le taux de dividende ou de revenu.

Lorsqu'on intervient sur des options sur des contrats futures, on peut très simplement retrouver le taux d'intérêt ainsi que le niveau du future grâce aux cotations des options uniquement. Cela peut se révéler très utile pour un calcul de volatilité implicite.



I - Retrouver Le Future...

On a vu que pour des options de type européen, on avait :

C - P = S - K . exp(- r . t)

où,
C est la valeur du Call
P est la valeur du Put
S est la valeur du Sous-jacent
K est la valeur du prix d'exercice
r est le taux sans risque continûment composé sur la période t
t la maturité des options
exp(x) est la fonction exponentielle pour le nombre x (par exemple en utilisant Excel, EXP(5) donne le résultat 148.4132 )

Si au lieu d'avoir le spot S, on avait le contrat future sur S de maturité t, on sait que

F = exp( r . t) . S

Ou encore, puisque [1 / exp(r.t)] = exp(-rt)

S = exp(- r . t) . F

On obtient donc :

C - P = S - K . exp(- r . t)
C - P = exp(- r . t) . F - K . exp(- r . t)
C - P = exp(- r . t) . ( F - K )


On a donc, pour un contrat future F et un strike K,

exp(- r . t) = (C - P) / (F - K)


Si on prend deux strikes différents, C1 et P1 le call et le put de strike K1, C2 et P2 le call et le put de strike K2,

exp(- r . t) = (C1 - P1) / (F - K1) = (C2 - P2) / (F - K2)

D'où,

(C1 - P1) / (F - K1) = (C2 - P2) / (F - K2)

Après réarrangement, on obtient :

F = [K1 . (C2 - P2) - K2 . (C1 - P1)] / [C2 - P2 - C1 + P1]




II - Obtenir le taux d'Intérêt:

Une fois que l'on a trouvé le future, le taux est assez simple. On prend un strike K

On a : exp(- r . t) = (C - P) / (F - K)
- r . t = Ln [(C - P) / (F - K)]


Avec Ln(x) la fonction logarithme népérien de la variable x.

Finalement,

r = - Ln [(C - P) / (F - K)] / t




III - S'il y a des dividendes:

S'il y a des dividendes ou des revenus, on sait que :

C - P = exp(- q . t) . S - K . exp(- r . t)

Avec q le taux de distribution continûment composé de dividende ou de revenu


On a alors,

C1 - P1 = exp(- q . t) . S - K1 . exp(- r . t)
C2 - P2 = exp(- q . t) . S - K2 . exp(- r . t)

D'où,
K2 . [ C1 - P1 ] = K2 .exp(- q . t) . S - K2 . K1 . exp(- r . t)
K1 . [C2 - P2 ] = K1 .exp(- q . t) . S - K1 . K2 . exp(- r . t)

En soustrayant les deux, il vient :

q = - Ln ( [K2 . [C1 - P1 ] - K1 . [C2 - P2 ]] / [ S . [ K2 - K1]] ) / T


La suite : Call-Put Parity : American Style Issue
Précédent : Call-put Parité : Une Relation Typiquement Européenne

Call Put Parity
D'autres Fiches
Equivalences entre les grecs
- Relations entre Sensibilités des Options -
Equivalences entre les grecs
Dans le modèle de Black & Scholes, l'effet du temps est lié à celui de la volatilité, lui même lié à celui du sous-jacent.
Options sur actions - Point sur la Societe Generale
- Strategies -
Options sur actions - Point sur la Societe Generale
Le bien être des spreads vis à vis des shorts put.
Chooser option - Call ou Put ?
- Stratégies Options Fondamentales -
Chooser option - Call ou Put ?
Certaines options de type "exotiques" peuvent se répliquer très simplement avec des options vanilles
Le modèle binomial : version détaillée - On price!
- Modèles d'évaluation d'options -
Le modèle binomial : version détaillée - On price!
Un moyen simple et très facile d'évaluer une option avec le modèle binomial est de le réaliser sur un tableur type Excel ou OpenOffice par exemple.
Option Pricing - Modele trinomial en Python
- Modèles d'évaluation d'options -
Option Pricing - Modele trinomial en Python
La programmation du modèle trinomial en Python est très facile
Définition simple d'une option
- ABC des Options -
Définition simple d'une option
Des termes simples pour expliquer ce qu'est une option sur les marchés financiers