logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Relations entre Sensibilités des Options  >  Call-put parité : taux et future 

Call-put parité : taux et future

Publié le 18 Juillet 2011 par Call Put Parity
icone rss


Les valeurs des options et la maturité suffisent à retrouver le niveau du contrat future et le taux d'intérêt. Parfois on peut même trouver le taux de dividende ou de revenu.

Lorsqu'on intervient sur des options sur des contrats futures, on peut très simplement retrouver le taux d'intérêt ainsi que le niveau du future grâce aux cotations des options uniquement. Cela peut se révéler très utile pour un calcul de volatilité implicite.



I - Retrouver Le Future...

On a vu que pour des options de type européen, on avait :

C - P = S - K . exp(- r . t)

où,
C est la valeur du Call
P est la valeur du Put
S est la valeur du Sous-jacent
K est la valeur du prix d'exercice
r est le taux sans risque continûment composé sur la période t
t la maturité des options
exp(x) est la fonction exponentielle pour le nombre x (par exemple en utilisant Excel, EXP(5) donne le résultat 148.4132 )

Si au lieu d'avoir le spot S, on avait le contrat future sur S de maturité t, on sait que

F = exp( r . t) . S

Ou encore, puisque [1 / exp(r.t)] = exp(-rt)

S = exp(- r . t) . F

On obtient donc :

C - P = S - K . exp(- r . t)
C - P = exp(- r . t) . F - K . exp(- r . t)
C - P = exp(- r . t) . ( F - K )


On a donc, pour un contrat future F et un strike K,

exp(- r . t) = (C - P) / (F - K)


Si on prend deux strikes différents, C1 et P1 le call et le put de strike K1, C2 et P2 le call et le put de strike K2,

exp(- r . t) = (C1 - P1) / (F - K1) = (C2 - P2) / (F - K2)

D'où,

(C1 - P1) / (F - K1) = (C2 - P2) / (F - K2)

Après réarrangement, on obtient :

F = [K1 . (C2 - P2) - K2 . (C1 - P1)] / [C2 - P2 - C1 + P1]




II - Obtenir le taux d'Intérêt:

Une fois que l'on a trouvé le future, le taux est assez simple. On prend un strike K

On a : exp(- r . t) = (C - P) / (F - K)
- r . t = Ln [(C - P) / (F - K)]


Avec Ln(x) la fonction logarithme népérien de la variable x.

Finalement,

r = - Ln [(C - P) / (F - K)] / t




III - S'il y a des dividendes:

S'il y a des dividendes ou des revenus, on sait que :

C - P = exp(- q . t) . S - K . exp(- r . t)

Avec q le taux de distribution continûment composé de dividende ou de revenu


On a alors,

C1 - P1 = exp(- q . t) . S - K1 . exp(- r . t)
C2 - P2 = exp(- q . t) . S - K2 . exp(- r . t)

D'où,
K2 . [ C1 - P1 ] = K2 .exp(- q . t) . S - K2 . K1 . exp(- r . t)
K1 . [C2 - P2 ] = K1 .exp(- q . t) . S - K1 . K2 . exp(- r . t)

En soustrayant les deux, il vient :

q = - Ln ( [K2 . [C1 - P1 ] - K1 . [C2 - P2 ]] / [ S . [ K2 - K1]] ) / T


La suite : Call-Put Parity : American Style Issue
Précédent : Call-put Parité : Une Relation Typiquement Européenne

Call Put Parity
D'autres Fiches
Black & Scholes: les grecs
- Modèles d'évaluation d'options -
Black & Scholes: les grecs
Le modèle de Black-Scholes définit la valeur théorique d'une option de type européen. Mais la gestion précise d'une telle option a besoin de plus d'outils : les grecs.
Simulation Monte Carlo : une première approche
- ABC des Options -
Simulation Monte Carlo : une première approche
Il existe différentes manières d'évaluer les options. Les formes fermées, les modèles "à arbre" en sont certaines. Monté Carlo en est une autre.
Le calendar spread : une première approche
- Stratégies Options Avancées -
Le calendar spread : une première approche
Une des stratégies les plus intéressantes avec les options classiques...
La vente d'option d'achat - vente de call
- Stratégies Options Fondamentales -
La vente d'option d'achat - vente de call
La vente de call(s) est une stratégie extrêmement utilisée par les gestionnaires de portefeuilles et de fonds.
Gamma hedging : illustration
- Hedging -
Gamma hedging : illustration
Afin de bien saisir la modification des perspectives inhérente au gamma-hedge, "une image vaut mille mots"
Bilan Strategie Double Butterfly €/USD
- Les Stratégies Options sur Forex -
Bilan Strategie Double Butterfly €/USD
Résumé et bilan de la stratégie de double butterfly spread sur l'euro/usd