logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Black & Scholes : le delta ∆ 

Black & Scholes : le delta ∆

Publié le 14 Juillet 2011 par Strategies-options.com
icone rss


Dans le modèle de Black & Scholes, l'expression du delta ∆ d'une option est défini comme la dérivée du prix de l'option par rapport au sous-jacent.

Dans le modèle de Black&Scholes on définit les deltas des calls et des puts comme la dérivée du prix d'une option par rapport au sous-jacent.

Si on pose,
La date d'évaluation t
Le niveau du sous jacent, son cours S
Le prix d'exercice K
Le taux d'intérêt continument composé r
Le taux de dividende / revenu continument composé q
La date d'échéance T
La volatilité du sous-jacent σ

Si on dit que le prix P d'une option est une fonction de t, S, K, r, q, T, σ
Alors on peut écrire que P = P(t, S, K, r, q, T, σ)
et,

Δ = ∂ P / ∂ S



I - Pour les calls

On a l'habitude décrire cela mathématiquement comme un taux variation pour des petits écarts du sous-jacent (dérivée partielle par rapport au sous-jacent S).

Si on pose τ = T - t la maturité restante à l'option

Δ = ∂ C / ∂ S
Δ = ∂ [exp ( - q.τ ) . S . N( d1 ) - exp ( - r.τ ) . K . N( d2 ) ] / ∂ S
Δ = exp ( - q.τ ) . N( d1 )

Avec
d1 = [ Ln( S / K ) + ( ( r - q + 0.5σ² ).τ )] / ( σ√τ )

Pour une explication plus précise de ce que signifie N( d1 ) : Interprétation De N(d1) Dans Le Modèle De Black-Scholes

Graphiquement pour un call de strike 100, d'échéance 1 an cela donne :


Intuitivement, on savait que le delta d'un call variait de 0 à 1 ou 0% à 100%, un call peut soit varier au maximum comme le sous jacent lorsqu'il est vraiment dans la monnaie, soit pas du tout lorsqu'il est vraiment en dehors de la monnaie. Le graphe le confirme.

A noter qu'"à la monnaie" en l'absence de dividende, lorsque le sous-jacent est exactement au niveau du prix d'exercice, le delta du call est toujours > 0.5 ou 50%.




II - Pour les puts

Encore une fois, c'est l'écriture mathématique du taux de variation du prix du put par rapport à une petite variation du sous-jacent.

on pose τ = T - t

Δ = ∂ P / ∂ S
Δ = ∂ [ - exp ( - q.τ ) . S . N( - d1 ) + exp ( - r.τ ) . K . N( - d2 ) ] / ∂ S
Δ = - exp ( - q.τ ) . N( - d1 )
Δ = - exp ( - q.τ ) . [ - N( d1 ) + 1 ]
Δ = exp ( - q.τ ) . N( d1 ) - exp ( - q.τ )

Avec
d1 = [ Ln( S / K ) + ( ( r - q + 0.5σ² ).τ )] / ( σ√τ )


Graphiquement pour un put de strike 100, d'échéance 1 an cela donne : cela donne,


On savait que le delta d'un put variait de -1 à 0 ou -100% à 0%. Le graphe le confirme encore une fois.

A noter qu'"à la monnaie"en l'absence de dividende, lorsque le sous-jacent est exactement au niveau du prix d'exercice, le delta du put est toujours < 0.5 ou 50%.


A retenir:

Première approximation de la variation d'une option dans un laps de temps court (pour éliminer l'effet du temps sur la prime), on a:




"Pour de petites variations du sous-jacent, une option varie de Δ . (variation du sous-jacent)"

Si on regarde le cours du sous-jacent dans un ordre croissant :
■ Le delta d'un call varie de 0 à 100%
■ Le delta d'un put varie de -100% à 0.


La suite : Black & Scholes : Le Gamma
Précédent : Black & Scholes: Les Grecs


Pdf connexes :

- Le modèle de Black–Scholes
- Black-Scholes Option Pricing Model



MODELE D'EVALUATION D'OPTIONS - INDEX
MODELE D'EVALUATION D'OPTIONS - CHAPITRE I
MODELE D'EVALUATION D'OPTIONS - CHAPITRE II
MODELE D'EVALUATION D'OPTIONS - CHAPITRE III

Strategies-options.com
D'autres Fiches
At The Money Forward Relationships 3
- Relations entre Sensibilités des Options -
At The Money Forward Relationships 3
Volatilité implicite At The Money Forward
Option Pricing - Black Scholes en Python
- Strategies -
Option Pricing - Black Scholes en Python
La programmation du modèle Black Scholes en Python est très facile
Volatilité de Garman-Klass
- ABC des Options -
Volatilité de Garman-Klass
D'abord avec les cours de clôture, puis avec les plus hauts-plus bas ( Volatilité de Parkinson ), maintenant avec les deux et le cours d'ouverture.
At The Money Forward Relationships 1
- Relations entre Sensibilités des Options -
At The Money Forward Relationships 1
"A la monnaie forward" ATMF, c'est à dire lorsque le prix d'exercice est au niveau du contrat forward/future, quelques relations particulièrement intéressantes apparaissent pour les options.
One to one-conseil en strategie
- Conseils en stratégies et pricing -
One to one-conseil en strategie
Le "One to One" est un cours personnalisé face à face ou à distance par Skype, Netviewer ou téléphone.
Café dérivés
- Cafés Dérivés - Formation Pricing en Direct -
Café dérivés
Café dérivés est une session d'un groupe de 5 personnes maximum sur Skype ou Netviewer afin de travailler en profondeur un point technique précis sur les options pendant 1h.