logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Black & Scholes : le delta ∆ 

Black & Scholes : le delta ∆

Publié le 14 Juillet 2011 par Strategies-options.com
icone rss


Dans le modèle de Black & Scholes, l'expression du delta ∆ d'une option est défini comme la dérivée du prix de l'option par rapport au sous-jacent.

Dans le modèle de Black&Scholes on définit les deltas des calls et des puts comme la dérivée du prix d'une option par rapport au sous-jacent.

Si on pose,
La date d'évaluation t
Le niveau du sous jacent, son cours S
Le prix d'exercice K
Le taux d'intérêt continument composé r
Le taux de dividende / revenu continument composé q
La date d'échéance T
La volatilité du sous-jacent σ

Si on dit que le prix P d'une option est une fonction de t, S, K, r, q, T, σ
Alors on peut écrire que P = P(t, S, K, r, q, T, σ)
et,

Δ = ∂ P / ∂ S



I - Pour les calls

On a l'habitude décrire cela mathématiquement comme un taux variation pour des petits écarts du sous-jacent (dérivée partielle par rapport au sous-jacent S).

Si on pose τ = T - t la maturité restante à l'option

Δ = ∂ C / ∂ S
Δ = ∂ [exp ( - q.τ ) . S . N( d1 ) - exp ( - r.τ ) . K . N( d2 ) ] / ∂ S
Δ = exp ( - q.τ ) . N( d1 )

Avec
d1 = [ Ln( S / K ) + ( ( r - q + 0.5σ² ).τ )] / ( σ√τ )

Pour une explication plus précise de ce que signifie N( d1 ) : Interprétation De N(d1) Dans Le Modèle De Black-Scholes

Graphiquement pour un call de strike 100, d'échéance 1 an cela donne :


Intuitivement, on savait que le delta d'un call variait de 0 à 1 ou 0% à 100%, un call peut soit varier au maximum comme le sous jacent lorsqu'il est vraiment dans la monnaie, soit pas du tout lorsqu'il est vraiment en dehors de la monnaie. Le graphe le confirme.

A noter qu'"à la monnaie" en l'absence de dividende, lorsque le sous-jacent est exactement au niveau du prix d'exercice, le delta du call est toujours > 0.5 ou 50%.




II - Pour les puts

Encore une fois, c'est l'écriture mathématique du taux de variation du prix du put par rapport à une petite variation du sous-jacent.

on pose τ = T - t

Δ = ∂ P / ∂ S
Δ = ∂ [ - exp ( - q.τ ) . S . N( - d1 ) + exp ( - r.τ ) . K . N( - d2 ) ] / ∂ S
Δ = - exp ( - q.τ ) . N( - d1 )
Δ = - exp ( - q.τ ) . [ - N( d1 ) + 1 ]
Δ = exp ( - q.τ ) . N( d1 ) - exp ( - q.τ )

Avec
d1 = [ Ln( S / K ) + ( ( r - q + 0.5σ² ).τ )] / ( σ√τ )


Graphiquement pour un put de strike 100, d'échéance 1 an cela donne : cela donne,


On savait que le delta d'un put variait de -1 à 0 ou -100% à 0%. Le graphe le confirme encore une fois.

A noter qu'"à la monnaie"en l'absence de dividende, lorsque le sous-jacent est exactement au niveau du prix d'exercice, le delta du put est toujours < 0.5 ou 50%.


A retenir:

Première approximation de la variation d'une option dans un laps de temps court (pour éliminer l'effet du temps sur la prime), on a:




"Pour de petites variations du sous-jacent, une option varie de Δ . (variation du sous-jacent)"

Si on regarde le cours du sous-jacent dans un ordre croissant :
■ Le delta d'un call varie de 0 à 100%
■ Le delta d'un put varie de -100% à 0.


La suite : Black & Scholes : Le Gamma
Précédent : Black & Scholes: Les Grecs


Pdf connexes :

- Le modèle de Black–Scholes
- Black-Scholes Option Pricing Model



MODELE D'EVALUATION D'OPTIONS - INDEX
MODELE D'EVALUATION D'OPTIONS - CHAPITRE I
MODELE D'EVALUATION D'OPTIONS - CHAPITRE II
MODELE D'EVALUATION D'OPTIONS - CHAPITRE III

Strategies-options.com
D'autres Fiches
Black & Scholes: les grecs
- Modèles d'évaluation d'options -
Black & Scholes: les grecs
Le modèle de Black-Scholes définit la valeur théorique d'une option de type européen. Mais la gestion précise d'une telle option a besoin de plus d'outils : les grecs.
Strategies Options CAC40 Up and Out Call
- Les Stratégies Options sur Actions et Indices -
Strategies Options CAC40 Up and Out Call
Stratégies Options sur le CAC pour ce début 2016
Les turbos warrants: sensibilité à la volatilité
- Warrants, Turbos, Options Binaires -
Les turbos warrants: sensibilité à la volatilité
Les prix des turbos warrants fluctuent vis à vis des variations de la volatilité à l'instar des options, mais pas dans les mêmes proportions.
Don't Trade Options Blind - Know Your Implied Volatility
- Webinaires Trading En différé -
Don't Trade Options Blind - Know Your Implied Volatility
Don't Trade Options Blind - Know Your Implied Volatility
La volatilité : On price !
- ABC des Options -
La volatilité : On price !
Le meilleur moyen de comprendre comment les traders calculent la volatilité d'un actif, c'est de le faire.
Black & Scholes : le theta θ
- Modèles d'évaluation d'options -
Black & Scholes : le theta θ
Le thêta θ dans le modèle de Black & Scholes est représenté par l'opposée de la dérivée partielle du prix de l'option par rapport au temps restant.