logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  ABC des Options  >  Volatilité de Parkinson 

Volatilité de Parkinson

Publié le 10 Septembre 2011 par Strategies-options.com
icone rss


Les cours de clôture ne suffisent pas à rendre compte de l'agitation d'un sous-jacent pendant la journée. La volatilité de Parkinson capte une information complémentaire.

La volatilité joue un rôle central en finance où elle est souvent associée à la notion de risque.
Mais les cours de clôture ne suffisent pas à rendre compte de l'agitation d'un sous-jacent pendant la journée.



I - Faiblesse de la volatilité calculée par l'écart type

On avait vu ( cf La Volatilité : Trading Formulae ) que la manière de calculer la volatilité par l'écart type des logarithmes des prix de clôtures avait quelques faiblesses.

De la même manière, il n'est pas rare sur les marchés de voir le cours d'un actif varier plus ou moins fortement en journée et terminer étale. Comme si cette journée avait été inexistante. Les cours de clôture de la veille et du jour étant identique, on aboutit à une volatilité nulle. Cela ne reflète absolument pas la véritable agitation qu'a subit le titre tout au long de la journée.




II - Besoin de tenir compte des plus hauts et plus bas de la journée

Fort du constat précédent, il parait logique d'utiliser la volatilité "réelle" de l'actif pendant la journée et ne pas se cantonner aux cours de clôture. C'est ce que se propose de faire la volatilité de Parkinson due au physicien du même nom (1980).

La volatilité de Parkinson capte une information complémentaire, à partir des "plus hauts" et des "plus bas" de la journée.

Pour n journées, si on appelle Variance Park la variance calculée selon Parkinson on obtient :

Variance Park. = ( 1 / ( 4nln(2) ) ) . ∑ ( ln( Hi / Li ) )²

σ Park. = √( variance Park. ) = √[( 1 / ( 4nln(2) ) ) . ∑ ( ln( Hi / Li ) )²]

Avec
n le nombre de jours
ln la fonction logarithme népérien
∑ la somme de 1 à n pour chaque jour i
Hi le plus haut de la journée i
Li le plus bas de la journée i


Comme à chaque fois, le nombre trouvé correspond à la volatilité pour une journée qu'il convient d'annualiser le cas échéant :

σ Park. annualisée = (√252) . σ Park.

σ Park. annualisée = (√252) . √[( 1 / ( 4nln(2) ) ) . ∑ ( ln( Hi / Li ) )²].



Si on part du principe qu'il y a 252 jours ouvrés dans l'année par exemple.

Livres Recommandés
Pricing et volatilité des options - Sheldon Natenberg
Options, futures et autres actifs dérivés 10e édition - John Hull


La suite : Volatilité De Garman-Klass
Précédent : La Volatilité : Trading Formulae

Strategies-options.com
D'autres Fiches
Strategies Options CAC 40 - Static Hedge - Suivi 1
- Conditions Generales de Ventes -
Strategies Options CAC 40 - Static Hedge - Suivi 1
Un premier point qui commence bien.
Echéances des Options et contrats Futures sur EURUSD - CME
- Les Stratégies Options sur Forex -
Echéances des Options et contrats Futures sur EURUSD - CME
Spécificités des contrats Futures et des options EURUSD sur le CME
Interprétation de N(d2) dans le modèle de Black-Scholes
- Modèles d'évaluation d'options -
Interprétation de N(d2) dans le modèle de Black-Scholes
Que signifie N(d2) dans le modèle Black & Scholes
Volatilité de Parkinson
- ABC des Options -
Volatilité de Parkinson
Les cours de clôture ne suffisent pas à rendre compte de l'agitation d'un sous-jacent pendant la journée. La volatilité de Parkinson capte une information complémentaire.
Strategies Options CAC 40 - Static Hedge - Suivi 1
- Formations -
Strategies Options CAC 40 - Static Hedge - Suivi 1
Un premier point qui commence bien.
Le butterfly spread : vega υ du butterfly spread
- Stratégies Options Avancées -
Le butterfly spread : vega υ du butterfly spread
Le butterfly spread réagit différemment aux variations de la volatilité implicite, en fonction du niveau du sous-jacent par rapport à la structure.