logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Le modèle binomial : version détaillée 

Le modèle binomial : version détaillée

Publié le 02 Janvier 2011 par Strategies-options.com
icone rss


Le modèle binomial peut se présenter sous forme d'arbre. Il est alors beaucoup plus riche d'informations.

On avait vu (cf : Le Modèle Binomial : On Price ! ) qu'il était simple de calculer le prix d'une option de type européen à l'aide du modèle binomial. Ce modèle possède en effet un caractère très intuitif sur la manière dont se valorise une option.



I - Une relation fondamentale

La pierre angulaire du principe d'évaluation d'options avec le modèle binomial est de saisir que si on néglige les taux d'intérêt, connaissant la valeur de deux prix possibles finaux de l'option à l'échéance ainsi que les probabilités "corrigées du risque"d'atteindre finalement ces niveaux, on peut trouver la valeur de l'option pour une date antérieure.

Ce que l'on écrit :


Comme toujours en finance, le temps c'est de l'argent. Si l'on veut tenir compte des taux d'intérêt, il suffit d'actualiser le résultat pour obtenir la valeur présente (cf Actualisation : Un Principe Fondamental ).

Ainsi, à partir du moment où l'on fractionne la durée de vie de l’option T en « n » petite durées « ∆t » qui valent chacune ∆t = T ∕n et que:
u est le coefficient de hausse, et u=exp(σ√∆t)
d le coefficient de baisse tels que d= exp(-σ√∆t)
p est la probabilité « risque-neutre » de hausse du sous-jacent et p=((exp(b∆t)-d) / (u-d) (où exp(.) est la fonction exponentielle de base e)

Alors on a ,

C'est la relation fondamentale qui permet d'obtenir de proche en proche, en "remontant le temps", la valeur aujourd'hui d'une option, connaissant les valeurs finales possibles de l'option ainsi que leurs probabilités corrigées du risque d'apparaître.




II - Une formule globale

A partir de la relation fondamentale du dessus, on en déduit que la valeur d'un call( d'un put) aujourd'hui est la somme pondérée par la probabilité corrigée du risque



La suite : Modèle Binomial : Version Détaillée - On Price!
Précédent : Le Modèle Binomial : On Price ! ou Le Modèle Binomial : On Price ! La Suite


Pdf connexes :

- BINOMIAL MODEL



MODELE D'EVALUATION D'OPTIONS - INDEX
MODELE D'EVALUATION D'OPTIONS - CHAPITRE I
MODELE D'EVALUATION D'OPTIONS - CHAPITRE II
MODELE D'EVALUATION D'OPTIONS - CHAPITRE III

Strategies-options.com
D'autres Fiches
Strategies Options CAC 40 - Static Hedge - Suivi 1
- Pricers à télécharger -
Strategies Options CAC 40 - Static Hedge - Suivi 1
Un premier point qui commence bien.
Options sur actions - Point sur la Societe Generale
- Conditions Generales de Ventes -
Options sur actions - Point sur la Societe Generale
Le bien être des spreads vis à vis des shorts put.
Le butterfly spread : sensibilité aux variations du spot-son delta ∆
- Stratégies Options Avancées -
Le butterfly spread : sensibilité aux variations du spot-son delta ∆
Le butterfly spread présente certaines caractéristiques qui lui confèrent plusieurs utilisations, en particulier en fonction de sa sensibilité aux variations du sous-jacent, son delta ∆.
Black & Scholes : le véga υ
- Modèles d'évaluation d'options -
Black & Scholes : le véga υ
Dans le modèle de Black & Scholes, le vega υ n'existe pas ! La volatilité étant supposée constante, les praticiens ont modifié la donne.
La volatilité : Trading Formulae
- ABC des Options -
La volatilité : Trading Formulae
Un titre qui bouge et une volatilité nulle, est ce possible ?
Strategie Options sur Devises - USDJPY ( Suivi 7 )
- Les Stratégies Options sur Forex -
Strategie Options sur Devises - USDJPY ( Suivi 7 )
Il y a bien un moment où ça va s'arrêter, non ?