logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Le modèle binomial : version détaillée 

Le modèle binomial : version détaillée

Publié le 02 Janvier 2011 par Strategies-options.com
icone rss


Le modèle binomial peut se présenter sous forme d'arbre. Il est alors beaucoup plus riche d'informations.

On avait vu (cf : Le Modèle Binomial : On Price ! ) qu'il était simple de calculer le prix d'une option de type européen à l'aide du modèle binomial. Ce modèle possède en effet un caractère très intuitif sur la manière dont se valorise une option.



I - Une relation fondamentale

La pierre angulaire du principe d'évaluation d'options avec le modèle binomial est de saisir que si on néglige les taux d'intérêt, connaissant la valeur de deux prix possibles finaux de l'option à l'échéance ainsi que les probabilités "corrigées du risque"d'atteindre finalement ces niveaux, on peut trouver la valeur de l'option pour une date antérieure.

Ce que l'on écrit :


Comme toujours en finance, le temps c'est de l'argent. Si l'on veut tenir compte des taux d'intérêt, il suffit d'actualiser le résultat pour obtenir la valeur présente (cf Actualisation : Un Principe Fondamental ).

Ainsi, à partir du moment où l'on fractionne la durée de vie de l’option T en « n » petite durées « ∆t » qui valent chacune ∆t = T ∕n et que:
u est le coefficient de hausse, et u=exp(σ√∆t)
d le coefficient de baisse tels que d= exp(-σ√∆t)
p est la probabilité « risque-neutre » de hausse du sous-jacent et p=((exp(b∆t)-d) / (u-d) (où exp(.) est la fonction exponentielle de base e)

Alors on a ,

C'est la relation fondamentale qui permet d'obtenir de proche en proche, en "remontant le temps", la valeur aujourd'hui d'une option, connaissant les valeurs finales possibles de l'option ainsi que leurs probabilités corrigées du risque d'apparaître.




II - Une formule globale

A partir de la relation fondamentale du dessus, on en déduit que la valeur d'un call( d'un put) aujourd'hui est la somme pondérée par la probabilité corrigée du risque



La suite : Modèle Binomial : Version Détaillée - On Price!
Précédent : Le Modèle Binomial : On Price ! ou Le Modèle Binomial : On Price ! La Suite


Pdf connexes :

- BINOMIAL MODEL



MODELE D'EVALUATION D'OPTIONS - INDEX
MODELE D'EVALUATION D'OPTIONS - CHAPITRE I
MODELE D'EVALUATION D'OPTIONS - CHAPITRE II
MODELE D'EVALUATION D'OPTIONS - CHAPITRE III

Strategies-options.com
D'autres Fiches
Strategie Options sur Devises - USDJPY ( Suivi 1 )
- Les Stratégies Options sur Forex -
Strategie Options sur Devises - USDJPY ( Suivi 1 )
On pensait que l'USDJPY bougerait, c'est parti !
CAC 40 : risk-reversal delta-hedge suivi 8
- Les Stratégies Options sur Actions et Indices -
CAC 40 : risk-reversal delta-hedge suivi 8
P&L + 1513 euros
Strategies Options CAC 40 - Static Hedge - Suivi 1
- Conditions Generales de Ventes -
Strategies Options CAC 40 - Static Hedge - Suivi 1
Un premier point qui commence bien.
Maturité de l'option
- ABC des Options -
Maturité de l'option
Bien qu'il existe aujourd'hui des instruments financiers "perpétuels", la plupart des options comporte une maturité
At The Money Forward Relationships 2
- Relations entre Sensibilités des Options -
At The Money Forward Relationships 2
On poursuit l'étude des relations pour les options qui apparaissent lorsque l'on se situe "ATMF"
Black & Scholes: On price !
- Modèles d'évaluation d'options -
Black & Scholes: On price !
Il est temps de pricer une option dans l'univers de Black-Scholes soi même. C'est très facile de réaliser cette évaluation sur un tableur type Excel ou OpenOffice par exemple.