logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Le modèle trinomial : une première approche 

Le modèle trinomial : une première approche

Publié le 04 Janvier 2011 par Strategies-options.com
icone rss


Les modèles numériques sont une famille. Cette fois le grand frère du modèle binomial : le modèle trinomial

Nous avions vu cf Modèle Binomial : Une Version Simple Pour Les Options Européennes que l'on pouvait très facilement à l'aide d'une feuille de calcul, trouver la valeur d'une option de type européen.
Nous avions vu aussi que cette manière de trouver la valeur de l'option était approximative et fonction du nombre de "périodes", c'est à dire que plus le nombre de périodes est important et plus on se rapprochait de la valeur théorique "juste" donnée par le modèle de Black & Scholes.

L'intérêt de cette approche était d'avoir la possibilité de calculer la valeur approximée d'une option de type européen mais aussi, au prix d'une simple modification, celui d'une option de type américain cf Le Modèle Binomial : American Style Options.



I - Les ajustements

Cette fois, on augmente les possibilités de variation du sous-jacent. Plutôt que de prendre deux possibilités comme dans le modèle binomial, cette fois on en prend trois.

Si on note :
σ la volatilité annualisée
T la maturité de l'option
n le nombre de période
t la durée d'une période (t=T/n)
r le taux d'intérêt sans risque annualisé sur la période
q le taux de dividende annualisé sur la période
Y=r-q le coût de portage

Et que l'on note d'autre part,
u le coefficient de hausse du sous jacent d'une période à l'autre
m le coefficient de maintien du sous jacent d'une période à l'autre
d le coefficient de baisse du sous jacent d'une période à l'autre

pu : la probabilité "risque neutre" de hausse du sous jacent d'une période à l'autre
pm : la probabilité "risque neutre" de maintien du sous jacent d'une période à l'autre
pd : la probabilité "risque neutre" de baisse du sous jacent d'une période à l'autre



II - Expressions

Ainsi :


On peut très facilement, en suivant le même principe que le modèle binomial, dresser un arbre qui permette le calcul d'une option, call ou put.

Le mieux, c'est de le faire ensemble. On va voir cela dans la prochaine fiche.


La suite : Modèle Trinomial : Version Détaillée - On Price !
Précédent :Modèle Binomial : Une Version Simple Pour Les Options Européennes ou Le Modèle Binomial : American Style Options

Strategies-options.com
D'autres Fiches
Strategie Options sur Devises - USDJPY ( Suivi 2 )
- Les Stratégies Options sur Forex -
Strategie Options sur Devises - USDJPY ( Suivi 2 )
Du mieux sur le P&L !
Call-Put Symétrie #2
- Relations entre Sensibilités des Options -
Call-Put Symétrie #2
Une évidence ATMF
Actualisation : un principe fondamental
- ABC des Options -
Actualisation : un principe fondamental
L'actualisation est un procédé qui permet de comparer les flux financiers.
CAC 40 : risk-reversal delta-hedge suivi 7
- Les Stratégies Options sur Actions et Indices -
CAC 40 : risk-reversal delta-hedge suivi 7
Malgré la hausse significative de la volatilité implicite des options, on reste positif cette semaine.
Le delta ∆
- ABC des Options -
Le delta ∆
Le delta ∆ d'une option correspond au taux de variation du prix de cette option par rapport au sous-jacent.
Volatilité de Parkinson
- ABC des Options -
Volatilité de Parkinson
Les cours de clôture ne suffisent pas à rendre compte de l'agitation d'un sous-jacent pendant la journée. La volatilité de Parkinson capte une information complémentaire.