logo strategies-options Accès Site
 
panier
"Gérer, c'est prévoir"
Le site consacré aux stratégies de trading incorporant des produits dérivés, en particulier des options.
Accueil  >  Modèles d'évaluation d'options  >  Black & Scholes : le modèle, présentation et solution ( Part 1 ) 

Black & Scholes : le modèle, présentation et solution ( Part 1 )

Publié le 10 Juillet 2011 par Calendarspread
icone rss


Le modèle de Black & Scholes est sans doute le modèle d'évaluation d'options le plus connu. Il est important de comprendre comment on peut le démontrer.

Le modèle de Black & Scholes est sans doute le modèle d'évaluation d'options le plus connu et peut être même le modèle mathématique le plus connu tout court.

Ce modèle est en fait une adaptation du modèle de Louis Bachelier (1900), et qui diffère seulement de quelques détails.

La démonstration suivante n'est pas celle de Black & Scholes, mais elle fournit simplement la manière d'appréhender le modèle. Elle est largement inspirée de P.W.



I - Une équation de base

On sait d'après Equivalences Entre Les Grecs que si l'on part du principe qu'un actif S suit un mouvement brownien géométrique, on a :

Si r <> 0

V(S,t) = Δ . S + (1/r) . (0.5 . Γ . S² . σ² + Θ)

où,
V est la valeur de l'option
Δ le delta de l'option
r le taux d'intérêt composé continument
Γ le gamma de l'option
σ la volatilité annualisée
Θ le thêta annualisé de l'option
T la maturité de l'option en année
t la date d'évaluation en année

On l'écrit parfois

rV(S,t) - rΔ . S - 0.5 . Γ . S² . σ² - Θ = 0


ps : si r = 0

(0.5 . Γ . S² . σ² + Θ) = 0



II - La résolution

La démonstration repose sur plusieurs changements de variables.

On obtient :








Tant que l'on ne s'éloigne pas trop des hypothèses de Black Scholes, le modèle permet d'évaluer quantité d'instruments financiers. D'où son succès.


La suite : Black & Scholes : Le Modèle, Présentation Et Solution ( Part 2 )
Précédent : Black & Scholes : Une Première Approche

Calendarspread
D'autres Fiches
CAC 40 - Volatilité Historique -
- ABC des Options -
CAC 40 - Volatilité Historique -
La volatilité historique du CAC 40, calculée par l'écart type, au 19 MARS 2018.
Le modèle binomial : version détaillée - On price!
- Modèles d'évaluation d'options -
Le modèle binomial : version détaillée - On price!
Un moyen simple et très facile d'évaluer une option avec le modèle binomial est de le réaliser sur un tableur type Excel ou OpenOffice par exemple.
Options Binaires : gammas des options binaires
- Warrants, Turbos, Options Binaires -
Options Binaires : gammas des options binaires
Les gammas des options binaires peuvent s'exprimer simplement en fonction des grecs des options classiques.
Equivalences entre les grecs (2)
- Relations entre Sensibilités des Options -
Equivalences entre les grecs (2)
Nous avions vu une première équivalence pour les options, en voici une autre, cette fois entre gamma et vega.
CAC 40 : risk-reversal delta-hedge suivi 4
- Les Stratégies Options sur Actions et Indices -
CAC 40 : risk-reversal delta-hedge suivi 4
+1 % cette semaine pour le CAC 40, notre risk reversal delta hedgé en profite un peu...
Strategie Options sur Devises - USDJPY ( Suivi 10 et fin )
- Les Stratégies Options sur Forex -
Strategie Options sur Devises - USDJPY ( Suivi 10 et fin )
P&L + 367267 JPY, environ + 3846 USD